
FPGA Bitstream Security: A Day in the Life
Adam Duncan∗, Fahim Rahman†, Andrew Lukefahr∗, Farimah Farahmandi†, Mark Tehranipoor†

∗Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47401 USA
†Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611 USA

Email: adamdunc@indiana.edu

Abstract—Security concerns for field-programmable gate
array (FPGA) applications and hardware are evolving as FPGA
designs grow in complexity, involve sophisticated intellectual
properties (IPs), and pass through more entities in the design
and implementation flow. FPGAs are now routinely found
integrated into system-on-chip (SoC) platforms, cloud-based
shared computing resources, and in commercial and government
systems. The IPs included in FPGAs are sourced from multiple
origins and passed through numerous entities (such as design
house, system integrator, and users) through the lifecycle. This
paper thoroughly examines the interaction of these entities
from the perspective of the bitstream file responsible for the
actual hardware configuration of the FPGA. Five stages of the
bitstream lifecycle are introduced to analyze this interaction: 1)
bitstream-generation, 2) bitstream-at-rest, 3) bitstream-loading,
4) bitstream-running, and 5) bitstream-end-of-life. Potential
threats and vulnerabilities are discussed at each stage, and both
vendor-offered and academic countermeasures are highlighted
for a robust and comprehensive security assurance.

Keywords—FPGA Security, Encryption, Bitstream Protection

I. INTRODUCTION

A field-programmable gate array (FPGA) is an integrated
circuit with post-fabrication hardware programming capa-
bilities used to implement custom functionality on a ded-
icated hardware platform [1]. Products ranging from low-
cost consumer electronics to high-end commercial systems
use FPGAs for reconfigurability, low development cost, and
high-performance [2]. The specific hardware functionality pro-
grammed into an FPGA is defined by a binary file commonly
known as a bitstream which is generated following a rigorous
design, synthesis, and validation process. FPGAs are typically
classified by the type of on-chip configuration memory used to
store this bitstream file, with common examples being static
random access memory (SRAM), Flash, and antifuse. Each
configuration memory variant has associated performance, fab-
rication, and security tradeoffs as discussed in [2]. However, in
each FPGA type, the primary FPGA-specific security concern
eventually simplifies down to protecting the bitstream from
either tampering or intellectual property (IP) piracy. Tampering
an FPGA bitstream can compromise the root of trust, and
thus the security, of an entire system. Just as consequential, IP
piracy conducted at the bitstream level can have an enormous
financial impact for the design house and system manufacturer.

A simplified design flow illustrating the loading of a
bitstream into an FPGA is depicted in Figure 1(a). The
FPGA manufacturer, such as Xilinx, Intel, or Microsemi, first

produces the FPGA integrated circuit (IC), along with the
proprietary bitstream development software. The user loads
the design into the bitstream development software to generate
the bitstream file. The bitstream is then loaded into the FPGA
configuration memory when the device is powered on for
functional operation.

Early FPGAs could only hold simple designs, e.g., 1000
ASIC equivalent gates for Xilinx XC2064 [3], making this de-
sign flow tractable. However, FPGA technology has matured,
and the size and the complexity of the FPGA have grown over
time. The Xilinx VU19P device released in 2019 contains over
9-million logic cells, or roughly 90-million ASIC gates [4]. A
design utilizing a significant portion of these logic resources
often requires a large team of designers, incorporating multiple
third party IP (3PIP) blocks and legacy designs. The VU19P,
like most recent FPGAs, also allows for partial reconfiguration,
that is allowing a system programmer to reconfigure the FPGA
while operating in the field with partial bitstream updates. Fig-
ure 1(b) shows the modern-day FPGA design flow with these
additional entities interacting with each other and highlights
their connection paths to the final bitstream responsible for
the FPGA hardware configuration. As each entity shares a
connection to the bitstream, they also pose a potential security
threat to the authenticity, integrity, and confidentiality of the
bitstream.

In this paper, we explore the journey an FPGA bitstream
takes from conception to FPGA-based system obsolescence
and present a comprehensive threat taxonomy to guide the
reader. Industry and academic countermeasures are then pre-
sented to illustrate defenses against each threat. The re-
viewed protection mechanisms are composed of five stages:
1) bitstream-generation, 2) bitstream-at-rest, 3) bitstream-
loading, 4) bitstream-running, and lastly, 5) bitstream-end-of-
life (EOL). Our main contribution in this paper is to provide
a comprehensive security assessment of the bitstream as it
travels between these stages.

The rest of the paper is organized as follows: Related work
and additional background information is provided in Section
II. We introduce our bitstream lifecycle stages and present the
threat taxonomy in Section III. Security threats and vulnerabil-
ities, along with selected countermeasures, associated with the
bitstream-generation stage are discussed in Section IV. Similar
analysis is provided for the subsequent stages – bitstream-at-
rest, bitstream-loading, bitstream-running, and bitstream-end-
of-life – in Sections V, VI, VII, and VIII, respectively. Finally,

Security Invited 1.1
978-1-7281-4823-6/19/$31.00 c©2019 IEEE

INTERNATIONAL TEST CONFERENCE 1

Fig. 1: a) Classical view of the FPGA design flow. b) Modern FPGA design flow involving multiple entities.

the paper is concluded in Section IX.

II. BACKGROUND

Different entities involved in a modern and complex FPGA
design flow are highlighted in Figure 1(b). The 3PIP design
house produces generic or client-specific IPs for the system
integrator. The system integrator obtains and integrates the
3PIPs with in-house IPs to produce the actual bitstream for
the FPGA. The system programmer represents the entity in
charge of loading the bitstream into the FPGA. Lastly, in-field
is used in reference of the FPGA operating in the field, such as
inside a computer networking router, with its bitstream loaded
into its physical configuration memory.

The physical configuration memory that stores the bitstream
in an FPGA has a direct impact on the security and accessibil-
ity of a bitstream. SRAM-based FPGAs are the most common
FPGA type, using volatile SRAM-based latches to store the
bitstream. They are fabricated using standard state-of-the-art
manufacturing processes allowing for high-performance and
high-density [5]. However, they require off-chip bitstream
storage, and must transmit the bitstream into the FPGA after it
is powered on. Hence it is possible for an attacker to intercept
the unprotected bitstream at the board level [5].

There also exist non-volatile FPGAs, such as Flash memory
and antifuse-based, which store their bitstream inside the
FPGA, eliminating the board-level bitstream interception prob-
lem. These FPGAs require additional manufacturing process
steps and lack in the performance and density metrics of
their SRAM-based counterparts [5]. Academic researchers
have also proposed FPGA designs utilizing emerging non-
volatile memories such as magneto-resistive RAM (MRAM)
to produce higher performance non-volatile FPGAs [6].

Irrespective to complexity and memory architecture, FPGA
security issues eventually simplify down to unauthorized ac-
cess and tampering to the FPGA bitstream. For example, con-
cerns may include attackers performing reverse engineering on
proprietary IP or may involve the loading of an unauthorized
design into an FPGA-based system to alter intended system be-
havior. Specific threats and countermeasures will be discussed
throughout subsequent sections of this paper.

FPGA vendors have included bitstream protection features
dating back to the earliest FPGAs. Xilinx published an applica-
tion note in 1997 to program the FPGA at a secure facility and
use a battery to maintain power throughout the lifetime of the
system, preventing an attacker from intercepting the bitstream
[7]. In 2001, Xilinx introduced bitstream encryption into their
Virtex-II devices using the Data Encryption Standard (DES)
[8]. Here, the bitstream is encrypted with an encryption key
that is stored securely within the FPGA. Without knowledge
of the encryption key, an adversary cannot reverse engineer
or copy the bitstream. Other FPGA manufacturers have since
included bitstream encryption in their devices, with encryption
standards eventually migrating to include variants of the newer
Advanced Encryption Standard (AES) [5].

In 2009, on-chip bitstream authentication was included by
Xilinx in their Virtex-6 devices [5]. This authentication imple-
ments a keyed-Hash Message Authentication Code (HMAC)
algorithm in hardware to compute the hash digest of a bit-
stream. The digest is compared to a pre-computed reference
digest before bitstream loading, and the loading is aborted
upon a mismatch. In 2015, Microsemi included physically
unclonable function (PUF) protection to their bitstream en-
cryption keys in their IGLOO2 and Smartfusion2 devices [9].
The PUF uses the inherent physical properties of the IC to
generate a device-specific digital signature generated at run-
time by the chip. This PUF value is then incorporated into the
bitstream encryption scheme so that an attacker cannot thwart
the encryption protection by obtaining the on-chip encryption
key alone. Xilinx and Intel also offer similar solutions for their
Ultrascale+ and Stratix-10 devices, respectively [10], [11].

III. THREAT MODEL

The modern FPGA design flow experiences complex in-
teractions among multiple involved entities as discussed in
Section II. We present our threat taxonomy in Figure 2 to
explore the threats and vulnerabilities facing the bitstream as it
travels amongst these different FPGA entities. The top flow of
Figure 2 illustrates the Design Flow Entities involved: 1) 3PIP
Design House, 2) System Integrator, 3) System Programmer,
4) System in-Field, and lastly 5) Recycler.

Security Invited 1.1 INTERNATIONAL TEST CONFERENCE 2

Fig. 2: A taxonomy of the different threats facing a bitstream as it traverses through a modern FPGA design flow composed of multiple
entities.

Our five Bitstream Stages are located below these entities
and describe the different points involved in the journey of
a bitstream. Bitstream-Generation refers to the stage where
the bitstream is physically being generated by either FPGA
design tools or other means. Bitstream-at-Rest defines the
stage where a bitstream has been generated and is stored
either on a computer, in a cloud repository, or in a non-
volatile memory that is not currently configuring the FPGA.
Bitstream-Loading describes the physical act of loading the
bitstream from its resting state into the FPGA configuration
memory. Bitstream-Running is the state where a bitstream
has been loaded into the configuration memory, and the
FPGA is operating according to its programmed hardware
configuration. Lastly, Bitstream-EOL is used to describe the
decommissioning of the bitstream as well as physical FPGA-
related threats tangentially related to the FPGA bitstream.

The interaction between the design flow entities and bit-
stream stages illustrates the complexity involved in modern
FPGA security. The first observation is that each design flow
entity has a connection to more than one bitstream stage. For
example, the in-field system may contain a bitstream stored
in a non-volatile memory on a PCB, categorized as bitstream-
at-rest. After the system powers up, it enters the bitstream-
loading stage, and transitions into the bitstream-running stage
after the bitstream reaches the FPGA configuration memory.

Several threat categories are provided for each bitstream
stage as shown in the bottom of Figure 2. The taxonomy
also lists two examples for threat category. The subsequent
sections of this paper will discuss these threats and associated
countermeasures in detail with respect to each bitstream stage.

IV. BITSTREAM GENERATION

The life a bitstream begins with an intended hardware
design specification that is targeted towards the FPGA. The

design specification is then translated into a complete design
IP that is either developed by the user, outsourced as 3PIP,
includes other licensed IP, or is a combination of all. At this
point, the FPGA design software takes the IP and synthesizes
it into FPGA resources according to the targeted FPGA models
and specifications. These resources are then placed within the
FPGA fabric and routed together to create a final configuration.
This final configuration is ultimately specified as the bitstream.
This bitstream generation process can be seen in Figure 3.
Two important things can be observed from this figure. First,
the design flow is similar to that of an ASIC, and as such,
the design specification and IP steps share the same threats
and countermeasures found in the ASIC literature. Second,
the synthesis, place and route, and bitstream generation steps
have distinct differences compared to an ASIC, due to their
reconfigurability and the fact that the physical FPGA fabric,
including the model-specific hardware information, is often
public and known to an attacker.

Our taxonomy in Figure 2 divides threats in the bitstream-
generation phase into two categories: malicious intent and
non-malicious intent. Malicious intent refers to an attacker
deliberately performing an attack, such as Trojan insertion or
IP overuse during the generation of a bitstream. Non-malicious
intent is presented to cover the expanding threat space where
vulnerabilities are unintentionally introduced by the complex
FPGA design tools generating final bitstreams.

Fig. 3: A simplified view of the FPGA bitstream generation flow.

Security Invited 1.1 INTERNATIONAL TEST CONFERENCE 3

A. Malicious Design Flow Threats

Trojan Attacks: Attacks on the design IP within the
bitstream generation flow are often very similar to attacks on
design IPs in an ASIC design flow. For example, hardware
Trojan insertion [12] shares the same basic attack principles for
register transfer level (RTL) design IP, independent of whether
the IP is targeting an FPGA or an ASIC. Once the design
IP has been synthesized into the specific design elements
inside the FPGA, the synthesized blocks become vulnerable
to Trojan insertion attack. Mal-Sarkar et al. discussed FPGA-
specific post-synthesis threat vectors [13] as illustrated in
Figure 4. Here, logic blocks contain programmable lookup
tables (LUTs), combinational logic primitives such as adders,
and sequential elements in the form of flip-flops and latches.
These elements are combined to implement combinational and
sequential logic functions. There are also routing elements:
local interconnects, connection boxes, and switch boxes which
are used to route outputs between logic blocks.

An attacker, such as a rogue employee with access to the
design in this post-synthesis state can change the properties
of logic blocks to introduce a Trojan or modify the design
functionality in some way. After synthesis, logic blocks go
through a place and route step where they are placed within
the FPGA fabric at specific locations. Similarly, routing ele-
ments are placed and configured to achieve the desired design
functionality. An attacker here can potentially modify the
placement of the blocks or add additional blocks to the design.

Lastly, the generated bitstream provides the correlation
between the configuration memory inside the FPGA and
the behavior of the logic blocks and routing elements. The
bitstream can be attacked directly to modify the configuration
memory which in turn modifies the functionality of FPGA,
as will be discussed in Section V. During the synthesis and
place and route steps, the designs are often checkpointed by
the bitstream development software. These design checkpoints
allow for the possibility of an insider threat to modify or
insert elements in the design by the editing of the intermediate
software file or by even creating a malicious modification to
the FPGA design software [14].

Trojan Countermeasures: Borrowing from ASIC Trojan
detection work, techniques presented by Salmani et al. [15]
can be used to detect Trojans in FPGA designs at the IP and
synthesis levels. These techniques operate on the principle
that the triggering of a Trojan is likely a rare occurrence,
and thus potentially identified by profiling and/or simulating
a design to probe for rarely activated logic. At the place and
route level, techniques have been presented for ASICs using
the built-in self-authentication (BISA) [16] approach to add
a test infrastructure inside a design to test for the placement
of additional malicious logic. Khaleghi et al. extended this
concept into the FPGA space to fill unused Logic Blocks
and routing elements with a test-verifiable dummy design to
prevent attackers from utilizing unused FPGA resources to
insert Trojans [17].

IP Piracy Attacks: IP piracy-based threats in the bitstream-

Fig. 4: The fundamental building blocks of the FPGA with high-
lighted Trojan insertion points [13].

generation phase [18] involve common threats familiar to
ASIC and software IP piracy. IP overuse refers to implement-
ing more instances of an IP than specified by the IP licensing
agreement, and it is becoming a larger threat as the market
for FPGA IP grows. IPs without specific licensing protection
are vulnerable to an attacker generating more bitstreams than
allowed. IP theft, IP reuse, and IP reverse engineering are
also a growing concern as techniques have been published
discussing tool flows to convert between intermediate formats
in the FPGA design flow cycle [19]. The specific issues
regarding the direct manipulation of the bitstream at the end
of the FPGA design flow are discussed in Section V.

IP Piracy Countermeasures: To detect the instances of IP
piracy, watermarks [20] can be inserted by the user in the IP
design stage and then evaluated at a later time to provide a
proof of authorship. FPGA vendor software packages currently
offer the distribution of third-party IP encrypted using IEEE
standard p1735 [21] to protect against reverse engineering
activities. To further protect against IP overuse, researchers
have proposed methodologies incorporating a PUF response
from the chip into the licensing to generate a device-specific
key to enable design functionality within a given device [22].
The general concept is shown in Figure 5, where a locked
bitstream component containing the IP is stored alongside a
challenge in a non-volatile memory. At runtime, the PUF is
evaluated, and its response is used to unlock the IP to enable
its design functionality. Two-party variants of these licensing
schemes have been proposed as well to improve efficiency
[23], [24]. Logic obfuscation is another powerful technique
used at the design level to defend against IP piracy [25].
Typical logic obfuscation schemes integrate logic locking gates
into a design to disable normal functionality unless correct
values are applied to the logic locking gate inputs.

B. Non-Malicious Threats

Attacks: Traditionally, the vendor bitstream generation
tools do not inherently offer security checking while they
implement the design flow. Consequently, there may be un-
intended security vulnerabilities introduced during the trans-

Security Invited 1.1 INTERNATIONAL TEST CONFERENCE 4

Fig. 5: A PUF-based licensing scheme binding IP to specific FPGA
devices to prevent FPGA IP piracy and overuse [22].

lation of a design into the logic blocks inside the FPGA.
High-level synthesis (HLS) specifically creates a higher level
of design abstraction for logic block representation, which
may increase the probability of unintended vulnerabilities. An
example for this may be an AES encryption engine implemen-
tation, which is cryptographically secure at the C language
abstraction but leaks information when it is synthesized to a
hardware logic for an FPGA implementation [26]. Research
findings compromising FPGA bitstream generation tools at
various stages have also been published [14].

Countermeasures: The defense against tool-induced vul-
nerabilities first begins by adhering to proven best software
security processes and verifying the tool authenticity through
the use of a trusted vendor-provided hash during tool download
and installation. At the design level, researchers have proposed
a moving target defense to defend against attacks originating
from malicious FPGA software tooling [27]. The movement
of the target in this situation is the randomization of the
synthesis and place and route operations by the vendor tools
so that the attacker cannot predict the necessary information
from a user design required to conduct a meaningful attack.
Researchers have addressed high-level Trojan insertion by
proposing Trojan-aware HLS [26]. Here, equivalence checking
is performed between the original higher-level code and the
lower-level code during the design space exploration (DSE) of
the HLS operation. Moreover, a set of security properties can
be developed to be used in formal verification tools to ensure
the safe design translation. FPGA software vendors can also
provide design checkpoint hashes which should be used along
with proven best practices for software security during the
design development.

V. BITSTREAM-AT-REST

After a bitstream has been generated, it needs to be stored
someplace so that it can eventually be loaded onto the FPGA
on its quest to perform its intended function. We use the
term bitstream-at-rest to define this storage state. Bitstream
storage locations for this stage can include multiple loca-
tions, including the hard disk of the computer used to run
the FPGA development software during bitstream generation.

Other storage locations can include a non-volatile memory
used to configure the FPGA upon the application of power, or
even a software repository of system-level firmware images
containing an FPGA bitstream. Bitstreams in this state may
be stored in their encrypted or plaintext versions, and are
vulnerable to tampering or IP extraction.

In order to develop an attack against a bitstream or to extract
its IP, a relationship between the bitstream and its hardware
behavior must be established. The format of a bitstream for
Xilinx, Intel, and Microsemi FPGAs is vendor proprietary and
often serves as the first line of defense against such threats.
However, multiple researchers have published techniques to
successfully reverse engineer a vendor-proprietary plaintext
bitstream into a netlist [29], [28]. The flow by Zhang et al.
[28] depicted in Figure 6 is an example of one such technique
where the bitstream is parsed into a functioning netlist that can
be simulated and analyzed. Once a netlist has been obtained,
it can be used to analyze a design for Trojans [28], or used
for malicious activities such as IP piracy or tampering.

Our threat taxonomy in Figure 2 divides threats in the
bitstream-at-rest stage into bitstream tampering and IP piracy
categories. Example attacks and countermeasures are pre-
sented below.

A. Bitstream Tampering

Attacks: Chakraborty et al. first introduced the concept
of Trojan insertion using plaintext bitstream manipulations in
2013 [30]. Since then, researchers have increased the sophis-
tication of bitstream manipulation attacks to create automated
blind attacks on soft IP blocks within an FPGA, such as
soft-encryption cores [31]. Bitstream reverse engineering can
further refine the scope of bitstream-based attacks to target
specific soft IP blocks inside the FPGA fabric [32].

Countermeasures: Techniques proposed by Kamali et al.
[33] and Karam et al. [34] help defend against tampering
attacks by applying logic locking at the bitstream level to
help obfuscate the netlist functionality from the attacker. To
accomplish the logic locking, the authors construct keys at
runtime using PUFs implemented within the FPGA fabric. The
PUF responses for each device are then connected to lookup
tables (LUTs) within the user design to act as a key so that

Fig. 6: A reverse engineering workflow translating a decrypted
bitstream into a netlist [28].

Security Invited 1.1 INTERNATIONAL TEST CONFERENCE 5

correct design functionality will only occur if the correct key
value is applied. Hence, if the attacker does not know the
correct key values, the attacker will not be able to extract the
correct functional netlist and as a consequence, will not be
able to find the desired node to tamper.

B. IP Piracy

Attacks: Another attack goal may be to extract proprietary
IP from a bitstream. Motivations for this may include not
paying for IP and then subsequently using the IP illegally in
a design, or reverse engineering an IP to extract proprietary
information that may be used commercially.

Countermeasures: Inserting watermarks at the bitstream
level has been proposed by Schmid et al. [35]. In contrast, RTL
watermarking, this technique directly embeds a watermark
into the LUT contents of a design. Watermark extraction
and comparison is then performed at the bitstream level to
determine authorship.

C. Single Key Encryption

Countermeasures: Modern Xilinx, Intel, and Microsemi
FPGAs offer encrypted versions of the generated bitstreams to
increase resistance to bitstream tampering, piracy, and reverse
engineering activities. In fact, modern Microsemi FPGAs such
as the Polarfire, Igloo2, and SmartFusion2 series, only store
encrypted versions of their bitstream [36]. While researchers
have demonstrated bitstream tampering attacks on encrypted
bitstreams [31] that have an observable behavior, encryption
makes targeted tampering attacks infeasible without knowl-
edge of the encryption key.

D. Red/Black Encryption

Countermeasures: The concept of a red/black encryption
scheme has been adopted by Intel, Xilinx, and Microsemi in
their respective Stratix 10, Ultrascale+, and Polarfire product
lines. The basic concept is outlined in Figure 7 for the Xilinx
Ultrascale+ Zynq [37]. Here, the red key used to decrypt the

Fig. 7: A red/black encryption key flow where the key decrypting
the bitstream at runtime is obfuscated from the key stored inside the
FPGA [37].

bitstream is not stored directly inside the FPGA. Instead, a
device-specific PUF is used to generate a black key that is
stored inside the FPGA. Upon power-up, the PUF is exercised,
and its response (black key) is used to generate the red key
for decrypting the bitstream used to populate the FPGA fabric.
As the black key is not directly used to encrypt the bitstream,
it cannot be used by itself to decrypt the bitstream by an
attacker.

VI. BITSTREAM-LOADING

The Bitstream-Loading stage loads the bitstream into the
configuration memory of the FPGA. The specifics of this
stage vary depending upon the configuration memory variant
from different vendors and FPGA device models. Non-volatile
memory-based FPGAs, such as Flash-based or antifuse-based,
only experience this stage when loading a new bitstream.
SRAM-based FPGAs require the bitstream to be loaded every
time power is applied to the FPGA to turn it on for functional
application. A set of on-chip authentication and decryption
circuitry is often employed by the FPGA during this stage to
both authenticate and decrypt the bitstream before loading it
into the configuration memory. FPGA-based system-on-chip
devices, such as the Xilinx Zynq family, add additional fea-
tures to the bitstream loading process in terms of bootloaders
as well as physical processor cores implemented on the same
silicon. Attacks considered within this stage originate from
unintended side channels as well as loading outdated, and
potentially vulnerable, bitstream versions.

Our threat taxonomy in Figure 2 divides threats in the
bitstream-loading stage into two categories. First, we discuss
side channel threats which involve the extraction of sensitive
on-chip information during the loading of the bitstream. Sec-
ond, we discuss replay attacks, where older, or potentially
unauthorized versions of a bitstream are loaded into the FPGA.

A. Side Channel Threats

Attacks: Side channel attacks (SCA) have been applied
to earlier generations of FPGAs to extract encryption keys
by collecting information through unintended side channels.
Encryption keys have been extracted in early generations
of FPGAs by researchers analyzing the power consumption
during the decryption process [38]. Similarly, information
from a user design running in the fabric has been shown
to leak in the electromagnetic spectrum [39]. Recently, laser-
based approaches have shown the ability to read out on-chip
information [40].

Countermeasures: FPGA vendors have addressed these
attacks by implementing side-channel defenses [36], [10], [11]
in their latest products to eliminate the leakage of key material.
Key rolling limits the amount of time an attacker has to extract
a given key, defeating attacks that rely upon multiple samples
such as differential power analysis (DPA). The black/red
scheme discussed in section V-D reduces the impact of a key
being extracted as well since the key stored in the non-volatile
memory of the FPGA is not the final key used to encrypt
or decrypt the bitstream. In addition, the academic research

Security Invited 1.1 INTERNATIONAL TEST CONFERENCE 6

Fig. 8: Xilinx secure boot process flow where user code first stage
bootloader (FSBL) loads the bitstream into the programmable logic
of an FPGA-based SoC [37].

community has proposed physical techniques such as nanopy-
ramids [41] to defend against these attacks. Nanopyramids are
intended to be inserted in the device manufacturing flow to
introduce random changes in the optical reflectance properties
of silicon when conducting optical probing attacks, preventing
an attacker using reflectance information to reveal information
about the corresponding circuit storing key material.

B. Bitstream Replay Threats

Attacks: Bitstream versioning refers to the concept of
having multiple versions of a bitstream for a given FPGA-
based system. Analogous to the software world, a vulnerability
can be discovered within an FPGA bitstream, requiring an
updated bitstream to be loaded into the device. However, if
the FPGA has already been deployed in the field, an adversary
can potentially downgrade it to use the original bitstream
containing the vulnerability [36]. Classical encryption and
authentication techniques do not protect against this concern
as the original vulnerable bitstream was encrypted and authen-
ticated with the same encryption key as the updated bitstream.
The act of securely transmitting an updated bitstream to the
FPGA is another security concern.

Countermeasures: Microsemi addresses replay attacks by
implementing a versioning control in their bitstream, combined
with setting different non-volatile version control bits within
their FPGA [36]. Xilinx offers QuickBoot [42] as a solution
to load different bitstream versions in different non-volatile
memory locations depending upon bits set in the bitstream.
Researchers have addressed possible security concerns with
the concept of transmitting an updated bitstream to a device
by implementing an authenticated station-to-station protocol
[43] or implementing custom protocols within user logic [44].

C. FPGA-based SoCs

Attacks: The introduction of the SoC-based FPGAs such
as the Xilinx Zynq [37] and Microsemi SmartFusion [9]
adds additional steps to the loading of the bitstream. SoC-
based FPGAs introduce the concept of a first stage bootloader
(FSBL), which is a user code designed to facilitate the loading
of the bitstream as well as to configure the non-FPGA aspects
of the SoC, such as the processor and other hard IP blocks.
Figure 8 shows the Xilinx “secure boot” implementation where
immutable BootROM code is used to boot the SoC and run
the user code within the FSBL, which eventually loads the
bitstream [37]. Attacks in this boot process can thus result
from running a malicious FSBL code in the SoC processor.

Countermeasures: To protect the privacy and integrity of
the FSBL, SoCs typically implement a FSBL authentication

Fig. 9: Xilinx Zynq first stage bootloader (FSBL) authentication
process [45].

scheme, such as the RSA-based authentication applied to the
Xilinx Zynq series shown in Figure 9. Here, a public/private
key pair is used to compare a hash signature on FSBL
code with a hash signature stored in the FPGA’s non-volatile
memory to only run authenticated FSBL code [45].

VII. BITSTREAM-RUNNING

The Bitstream-Running stage defines the stage when the
bitstream has been loaded into the configuration memory, and
the FPGA is operating according to its hardware configuration.
As shown in our threat taxonomy in Figure 2, this stage
is vulnerable to fault injection and run-time threats originat-
ing within the fabric. Faults injected into the configuration
memory, or directly into logic blocks and routing resources,
can modify the functionality of the FPGA and are a primary
concern in this stage. To correct faults in the configuration
memory, and to provide the FPGA designer with more flex-
ibility, modern FPGAs also include a partial reconfiguration
framework within their architectures to allow for the bitstream
to change dynamically at run-time. Partial reconfiguration
allows the FPGA design itself to update portions of the design
at run-time while keeping the remainder of the design intact.

We divide threats in the bitstream-running stage into two
categories according to our threat model in Figure 2. First, we
discuss fault injection on a running FPGA design. Next, we
discuss the emerging topic of run-time attacks.

A. Fault Injection

Threats: Faults may be injected into an FPGA running a de-
sign through a variety of means, such as clock glitches, power
glitches, electromagnetic pulses, laser exposure, or ionizing ra-
diation [46]. The physical mechanisms behind fault injections
have root in the physical transistors themselves. Therefore,
threats to integrated circuits can be considered applicable to
FPGAs. For example, random bit flips in the configuration
memory caused by atmospheric single event upsets (SEUs)
[47] are more of a concern as technology feature sizes shrink
and thus more of a concern for newer FPGAs fabricated in
state-of-the-art manufacturing processes. Targeted laser-based
fault injection [48] has also been discussed by researchers,
primarily as a means to replicate SEUs for hardening designs
to space radiation effects.

Security Invited 1.1 INTERNATIONAL TEST CONFERENCE 7

Countermeasures: Partial reconfiguration cores, such as
the internal configuration access port (ICAP) for Xilinx FP-
GAs, are included in modern FPGAs. Providing a user design
with access to the partial reconfiguration core in an FPGA
has been largely regarded as a security vulnerability [5] as
the user design can then have the capability to read and
write any area of the configuration memory. However, partial
reconfiguration is also used as a mechanism to detect and
correct for inadvertent bit flips in the configuration memory,
such as those caused by radiation-induced single event upsets
[49]. Several academic papers have proposed the use of the
Xilinx ICAP to read the configuration memory of an FPGA
at run-time and generate a hash for comparison against an
expected hash in order to detect run-time tampering [50],
[51]. In any usage of a partial reconfiguration core, proper
safeguards must be put in place.

B. Run-time Attacks

The massively parallel nature of FPGAs has lent themselves
to inclusion in data centers where users can purchase comput-
ing time. Amazon offers fee-based access to its FPGAs in
the cloud through their Amazon Web Service (AWS) program
[52]. Here, a shell architecture is described to abstract away
communication links and create a separate application area
in the FPGA. First, a design is created containing an ‘AWS
partial reconfigurable (PR) shell’ to facilitate the loading of a
user design. Next, the user design is loaded by the AWS PR
shell to fit into the designated user ‘custom PR logic’ section
of the floorplan. The shell protects a Peripheral Component
Interconnect (PCI) Express connection in the ‘static’ region,
manages clocking for the user region, and monitors activity
elsewhere in the FPGA [53].

Threats: The shared FPGA computing resources described
above have enabled a new class of remote side-channel attack,
where one bitstream can leak or corrupt information in another
bitstream, from a remote location. The example attack typi-
cally runs a user design, such as an oscillator-based array, on
a shared FPGA fabric in order to affect another user’s design
[54], [55]. In Figure 10(a), Schellenberg et al. showed that a
malicious bitstream can extract secrets from a victim bitstream
sharing the same FPGA fabric [54] by corrupting the power in
the shared power distribution network (PDN). It is also shown
that malicious code running in the FPGA SoC can corrupt
the PDN in a similar way to extract secrets from a victim
FPGA design (see Figure 10(b)). Similarly, research has been
performed to illustrate the possibility of a shared system-wide
resource like the printed circuit board (PCB) PDN being used
to affect an FPGA design. Here, the PCB PDN is corrupted by
another PCB component to induce faults or leak information
from the FPGA [55].

Countermeasures: Vendor-provided defenses to this type
of attack include a bitstream-level screening of tenant bit-
streams to check for suspicious functionality, such as multiple
parallel ring-oscillator arrays that could potentially create
power glitching. Modern FPGAs also incorporate on-chip
voltage and temperature sensors to allow for the detection of

Fig. 10: Remote side-channel attack where user bitstream information
can be extracted by a) malicious bitstreams on the same FPGA, or
b) malicious CPU code on the same FPGA SoC [54].

anomalies in a shared FPGA resource, like the PDN. Vendor-
provided soft-core defenses, such as the Xilinx Security Mon-
itor (SecMon) core, implement the reading of on-chip voltage
and temperature sensors, as well as the configuration memory
health, to detect anomalous behavior and implement tampering
penalties such the zeroization of the configuration memory,
AES keys, or asserting the global reset of the FPGA [56].

VIII. BITSTREAM-END-OF-LIFE

The last stage in our bitstream’s lifecycle is defined as
bitstream-end-of-life. We use this term to represent both the
end-of-life (EOL) of a bitstream as well as a stage to capture
threats to the physical FPGA device that are tangentially
related to the bitstream. EOL in this context refers to when
the FPGA running a bitstream has been decommissioned.
This could refer to a formal decommission and destruction
of a high-value proprietary system or the casual disposal of
an FPGA-based networking router to a public trashcan. For
other threats related to the bitstream, we briefly address FPGA
device counterfeiting and reverse engineering.

We again refer to our threat taxonomy in Figure 2 and focus
our discussion on two categories: data remanence and FPGA
device counterfeiting.

A. Bitstream Remanence

Threats: As FPGA-based systems reach EOL, their bit-
streams are also retired from use. A bitstream residing in
an on-board non-volatile memory chip initially designed to
program an SRAM-based FPGA may remain on that board in-
definitely, remaining vulnerable to potential bitstream reverse
engineering activities. Similarly, a bitstream stored in a Flash
or antifuse-based FPGA may remain on the FPGA after the
system has been disposed, creating a potential opportunity for
bitstream extraction.

Countermeasures: FPGA vendors have incorporated ze-
roization mechanisms into their on-chip security features that
allow for certain information stored within an FPGA to be
deleted by a user or as a tamper penalty. This information
space may include the original bitstream, or any other volatile
and non-volatile information inside the FPGA. The Microsemi
PolarFire FPGA family offers three levels of zeroization:
like-new, recoverable, and unrecoverable [36]. The like-new
option deletes user data and keys and returns the device to its
factory state. Recoverable is more comprehensive and places
the device in a state that is only recoverable by a Microsemi

Security Invited 1.1 INTERNATIONAL TEST CONFERENCE 8

Fig. 11: programmable ICs (FPGAs) were the most reported coun-
terfeit device type reported by ERAI in 2017 [22].

factory programming file. The unrecoverable option is the
most thorough, incorporating the destruction of all on-chip
data. Serialization certificates are provided by the device in
all three cases via a JTAG/SPI instruction to prove that the
operation was successful. Similar procedures are provided by
other manufacturers as well [56].

B. FPGA Device Counterfeiting

Threats: FPGAs are frequently among the most popular
counterfeit IC device types. As shown in Figure 11, ERAI
listed FPGAs as occupying approximately 20 percent of their
reported counterfeit part instances [57]. An example FPGA
counterfeiting technique involves the selling of used devices as
new devices. Remarking devices to represent more expensive
devices is also a concern, as legacy and industrial/military
grade FPGAs sell for a significant premium compared to their
standard counterparts. These counterfeits FPGAs pose a threat
to systems as their electrical and mechanical specifications as
well as reliability are subject to compromise.

Countermeasures: FPGA vendors have addressed counter-
feiting by both offering newer FPGA product lines designed to
serve as drop-in replacements for legacy FPGAs and making
their devices more difficult to counterfeit. Xilinx offers pin-
compatible devices in their newer Ultrascale+ product lines
that can replace older Ultrascale devices [58]. The major
FPGA vendors also offer device-specific markings, such as
unique packaging lid shapes, that defend against simple
package remarking attacks [59]. Academic researchers have
proposed the electrical characterization of oscillator structures
programmed into the FPGAs to tease out reliability physics
mechanism responses such as negative bias temperature insta-
bility (NBTI) and hot carrier injection (HCI) that can indicate
whether an FPGA has had previous usage [60].

FPGA vendors have begun incorporating fabric-accessible
mask-level device serial numbers and lot numbers, such as
the DeviceDNA information found in Xilinx FPGAs, to al-
low users to determine the authenticity of a given FPGAs.
DeviceID information indicating an FPGA product family
line is often accessible through the IEEE joint test action
group (JTAG) interface as well. Other counterfeit detection
techniques designed for ASICs are also applicable to FPGAs
and considered out of the scope for this paper [61].

IX. CONCLUSION

Our journey through the life of a bitstream has now come
to an end. We have ventured through five different stages
within the bitstream lifecycle: 1) bitstream-generation, 2)
bitstream-at-rest, 3) bitstream-loading, 4) bitstream-running,
and 5) bitstream-end-of-life. Each stage offered a connection
to different entities in the FPGA design flow and contained
unique threats along with countermeasures available from
both FPGA vendors and academia. A threat taxonomy was
introduced to capture the complex interactions between the
bitstream stages and the design flow entities and highlight
stage-specific threats.

Our threat taxonomy divided threats into two broad cate-
gories according to each distinct bitstream stage. More specific
threats and countermeasures were discussed in each threat
category to help inform the reader of the current state of the
art. As with any security-based research, a holistic approach
towards security is recommended for each design flow entity
to identify the pertinent threats and implement appropriate
countermeasures.

REFERENCES

[1] Microsemi, “Field-programmable gate array technology..” Norwell, MA,
USA:Kluwer, 1994.

[2] S. Trimberger, “Three ages of fpgas: A retrospective on the first thirty
years of fpga technology,” Proceedings of the IEEE, vol. 103, no. 3,
pp. 318–331, 2015.

[3] W. Carter, K. Duong, R. H. Freeman, H. Hsieh, J. Y. Ja, J. E. Mahoney,
L. T. Ngo, and S. L. Sze, “A user programmable reconfigurable gate
array,” in Proceedings Custom Integrated Circuits Conference, pp. 233–
235, IEEE, 1986.

[4] Xilinx, “Ultrascale fpga product tables and product selection guide..”
Xilinx, 2016.

[5] S. M. Trimberger and J. J. Moore, “Fpga security: Motivations, features,
and applications,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1248–
1265, 2014.

[6] W. Zhao, E. Belhaire, C. Chappert, and P. Mazoyer, “Spin transfer
torque (stt)-mram–based runtime reconfiguration fpga circuit,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 9, no. 2,
p. 14, 2009.

[7] Xilinx, “Configuration issues: Power-up, volatility, security, battery
back-up.” Xilinx, Appl. Note XAPP092, 1997.

[8] Xilinx, “Method and apparatus for protecting proprietary configuration
data for programmable logic devices.” U.S. Patent 6 654 889, 2003.

[9] Microsemi, “Ug0443 user guide smartfusion2 and igloo2 fpga security
and best practices.” 2015.

[10] E. Peterson, “Xapp1098 (v1.3): Developing tamper-resistant designs
with ultrascale and ultrascale+ fpgas,” 2018.

[11] Intel, “Ug-s10security:intel stratix 10 device security user guide,” 2019.
[12] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan

taxonomy and detection,” IEEE design & test of computers, vol. 27,
no. 1, pp. 10–25, 2010.

[13] S. Mal-Sarkar, A. Krishna, A. Ghosh, and S. Bhunia, “Hardware trojan
attacks in fpga devices: threat analysis and effective counter measures,”
in Proceedings of the 24th Edition of the Great Lakes Symposium on
VLSI, pp. 287–292, ACM, 2014.

[14] C. Krieg, C. Wolf, and A. Jantsch, “Malicious lut: a stealthy fpga trojan
injected and triggered by the design flow,” in Proceedings of the 35th
International Conference on Computer-Aided Design, p. 43, ACM, 2016.

[15] H. Salmani and M. Tehranipoor, “Analyzing circuit vulnerability to hard-
ware trojan insertion at the behavioral level,” in 2013 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFTS), pp. 190–195, IEEE, 2013.

[16] K. Xiao and M. Tehranipoor, “Bisa: Built-in self-authentication for
preventing hardware trojan insertion,” in 2013 IEEE international sym-
posium on hardware-oriented security and trust (HOST), pp. 45–50,
IEEE, 2013.

Security Invited 1.1 INTERNATIONAL TEST CONFERENCE 9

[17] B. Khaleghi, A. Ahari, H. Asadi, and S. Bayat-Sarmadi, “Fpga-based
protection scheme against hardware trojan horse insertion using dummy
logic,” IEEE Embedded Systems Letters, vol. 7, no. 2, pp. 46–50, 2015.

[18] A. Lesea, “Ip security in fpgas,” Xilinx http://direct. xilinx. com/bvdoc-
s/whitepapers/wp261. pdf, 2007.

[19] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French,
“Torc: towards an open-source tool flow,” in Proceedings of the 19th
ACM/SIGDA international symposium on Field programmable gate
arrays, pp. 41–44, ACM, 2011.

[20] A. K. Jain, L. Yuan, P. R. Pari, and G. Qu, “Zero overhead watermarking
technique for fpga designs,” in Proceedings of the 13th ACM Great Lakes
symposium on VLSI, pp. 147–152, ACM, 2003.

[21] IEEE, “Ieee recommended practice for encryption and management of
electronic design intellectual property (ip).ieee sa-1735-2014.” 2014.

[22] J. Zhang, Y. Lin, Y. Lyu, and G. Qu, “A puf-fsm binding scheme for
fpga ip protection and pay-per-device licensing,” IEEE Transactions on
Information Forensics and Security, vol. 10, no. 6, pp. 1137–1150, 2015.

[23] M. T. Rahman, D. Forte, Q. Shi, G. K. Contreras, and M. Tehranipoor,
“Csst: an efficient secure split-test for preventing ic piracy,” in 2014
IEEE 23rd North Atlantic Test Workshop, pp. 43–47, IEEE, 2014.

[24] D. B. Roy, S. Bhasin, I. Nikolić, and D. Mukhopadhyay, “Combining puf
with rluts: A two-party pay-per-device ip licensing scheme on fpgas,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 18,
no. 2, p. 12, 2019.

[25] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of
logic obfuscation,” in Proceedings of the 49th Annual Design Automa-
tion Conference, pp. 83–89, ACM, 2012.

[26] A. Sengupta, S. Bhadauria, and S. P. Mohanty, “Tl-hls: methodology
for low cost hardware trojan security aware scheduling with optimal
loop unrolling factor during high level synthesis,” IEEE Transactions
on computer-aided design of integrated circuits and systems, vol. 36,
no. 4, pp. 655–668, 2016.

[27] Z. Zhang, Q. Yu, L. Njilla, and C. Kamhoua, “Fpga-oriented moving
target defense against security threats from malicious fpga tools,” in
2018 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pp. 163–166, IEEE, 2018.

[28] T. Zhang, J. Wang, S. Guo, and Z. Chen, “A comprehensive fpga reverse
engineering tool-chain: From bitstream to rtl code,” IEEE Access, vol. 7,
pp. 38379–38389, 2019.

[29] F. Benz, A. Seffrin, and S. A. Huss, “Bil: A tool-chain for bitstream
reverse-engineering,” in 22nd International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 735–738, IEEE, 2012.

[30] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik, “Hardware
trojan insertion by direct modification of fpga configuration bitstream,”
IEEE Design & Test, vol. 30, no. 2, pp. 45–54, 2013.

[31] P. Swierczynski, G. T. Becker, A. Moradi, and C. Paar, “Bitstream fault
injections (bifi)–automated fault attacks against sram-based fpgas,” IEEE
Transactions on Computers, vol. 67, no. 3, pp. 348–360, 2017.

[32] M. Ender, P. Swierczynski, S. Wallat, M. Wilhelm, P. M. Knopp, and
C. Paar, “Insights into the mind of a trojan designer: the challenge to
integrate a trojan into the bitstream,” in Proceedings of the 24th Asia
and South Pacific Design Automation Conference, pp. 112–119, ACM,
2019.

[33] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan,
“Lut-lock: A novel lut-based logic obfuscation for fpga-bitstream and
asic-hardware protection,” in Proceedings VLSI (ISVLSI) 2018 IEEE
Computer Society Annual Symposium on. EH-2001, pp. 405–410, IEEE,
2018.

[34] R. Karam, T. Hoque, S. Ray, M. Tehranipoor, and S. Bhunia, “Ro-
bust bitstream protection in fpga-based systems through low-overhead
obfuscation,” in 2016 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pp. 1–8, IEEE, 2016.

[35] M. Schmid, D. Ziener, and J. Teich, “Netlist-level ip protection by
watermarking for lut-based fpgas,” in 2008 International Conference
on Field-Programmable Technology, pp. 209–216, IEEE, 2008.

[36] Microsemi, “User guide polarfire fpga security.” Microsemi, User Guide
UG07532, 2018.

[37] E. Peterson, “Xapp1323 (v1.1): Developing tamper-resistant designs
with zynq ultrascale+ devices,” 2018.

[38] A. Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the vulnerability of
fpga bitstream encryption against power analysis attacks: extracting keys
from xilinx virtex-ii fpgas,” in Proceedings of the 18th ACM conference
on Computer and communications security, pp. 111–124, ACM, 2011.

[39] E. De Mulder, P. Buysschaert, S. Ors, P. Delmotte, B. Preneel, G. Van-
denbosch, and I. Verbauwhede, “Electromagnetic analysis attack on an
fpga implementation of an elliptic curve cryptosystem,” in EUROCON
2005-The International Conference on” Computer as a Tool”, vol. 2,
pp. 1879–1882, IEEE, 2005.

[40] S. Tajik, H. Lohrke, J.-P. Seifert, and C. Boit, “On the power of
optical contactless probing: Attacking bitstream encryption of fpgas,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1661–1674, ACM, 2017.

[41] H. Shen, N. Asadizanjani, M. Tehranipoor, and D. Forte, “Nanopyramid:
An optical scrambler against backside probing attacks,” in ISTFA 2018:
Proceedings from the 44th International Symposium for Testing and
Failure Analysis, p. 280, ASM International, 2018.

[42] Xilinx, “Quickboot method for fpga design remote update.” Xilinx,
Appl. Note XAPP1081, 2014.

[43] J. Vliegen, N. Mentens, and I. Verbauwhede, “Secure, remote, dynamic
reconfiguration of fpgas,” ACM Transactions on Reconfigurable Tech-
nology and Systems (TRETS), vol. 7, no. 4, p. 35, 2015.

[44] S. Drimer and M. G. Kuhn, “A protocol for secure remote updates of
fpga configurations,” in International Workshop on Applied Reconfig-
urable Computing, pp. 50–61, Springer, 2009.

[45] E. Peterson, “Wp468 (v1.0): Leveraging asymmetric authentication to
enhance security-critical applications using zynq-7000 all programmable
socs,” Retrieved October, 2015.

[46] H. Li, G. Du, C. Shao, L. Dai, G. Xu, and J. Guo, “Heavy-ion
microbeam fault injection into sram-based fpga implementations of
cryptographic circuits,” IEEE Transactions on Nuclear Science, vol. 62,
no. 3, pp. 1341–1348, 2015.

[47] A. Lesea, S. Drimer, J. J. Fabula, C. Carmichael, and P. Alfke, “The
rosetta experiment: atmospheric soft error rate testing in differing tech-
nology fpgas,” IEEE Transactions on Device and Materials Reliability,
vol. 5, no. 3, pp. 317–328, 2005.

[48] V. Pouget, A. Douin, G. Foucard, P. Peronnard, D. Lewis, P. Fouillat, and
R. Velazco, “Dynamic testing of an sram-based fpga by time-resolved
laser fault injection,” in 2008 14th IEEE International On-Line Testing
Symposium, pp. 295–301, IEEE, 2008.

[49] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “Fpga partial reconfigu-
ration via configuration scrubbing,” in 2009 International Conference on
Field Programmable Logic and Applications, pp. 99–104, IEEE, 2009.

[50] T. Güneysu, I. Markov, and A. Weimerskirch, “Securely sealing multi-
fpga systems,” in International Symposium on Applied Reconfigurable
Computing, pp. 276–289, Springer, 2012.

[51] D. Owen Jr, D. Heeger, C. Chan, W. Che, F. Saqib, M. Areno, and
J. Plusquellic, “An autonomous, self-authenticating, and self-contained
secure boot process for field-programmable gate arrays,” Cryptography,
vol. 2, no. 3, p. 15, 2018.

[52] D. Pellerin, “Announcing amazon ec2 fi instances with
custom fpgas.” ”https://www.slideshare.netlAmazonWebServices/
announcing-amazon-ec2-fl-instances-with-custom-fpgas,
retrieved,April13,2017”.

[53] S. Trimberger and S. McNeil, “Security of fpgas in data centers,” in 2017
IEEE 2nd International Verification and Security Workshop (IVSW),
pp. 117–122, IEEE, 2017.

[54] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An inside
job: Remote power analysis attacks on fpgas,” in 2018 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pp. 1111–1116,
IEEE, 2018.

[55] M. Zhao and G. E. Suh, “Fpga-based remote power side-channel
attacks,” in 2018 IEEE Symposium on Security and Privacy (SP),
pp. 229–244, IEEE, 2018.

[56] Xilinx, “Security monitor ip core product brief.” Xilinx, Product Brief,
2015.

[57] D. Akhoundov, “2017 erai reported parts analysis.” ”http:
//www.erai.com/ERAI Blog/3139/Damir Akhoundov 2017 ERAI
Reported Parts Analysis”.

[58] Xilinx, “Ultrascale architecture and product data sheet: Overview.”
Xilinx, Datasheet DS890 (v3.10), 2019.

[59] Xilinx, “Xq ultrascale architecture data sheet: Overview.” Xilinx,
Datasheet DS895 (v2.0), 2018.

[60] M. M. Alam, M. Tehranipoor, and D. Forte, “Recycled fpga detection
using exhaustive lut path delay characterization,” in 2016 IEEE Inter-
national test conference (ITC), pp. 1–10, IEEE, 2016.

[61] M. M. Tehranipoor, U. Guin, and D. Forte, “Counterfeit integrated
circuits,” in Counterfeit Integrated Circuits, pp. 15–36, Springer, 2015.

Security Invited 1.1 INTERNATIONAL TEST CONFERENCE 10

